Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals

نویسندگان

  • Benjamin J Carey
  • Jian Zhen Ou
  • Rhiannon M Clark
  • Kyle J Berean
  • Ali Zavabeti
  • Anthony S R Chesman
  • Salvy P Russo
  • Desmond W M Lau
  • Zai-Quan Xu
  • Qiaoliang Bao
  • Omid Kevehei
  • Brant C Gibson
  • Michael D Dickey
  • Richard B Kaner
  • Torben Daeneke
  • Kourosh Kalantar-Zadeh
چکیده

A variety of deposition methods for two-dimensional crystals have been demonstrated; however, their wafer-scale deposition remains a challenge. Here we introduce a technique for depositing and patterning of wafer-scale two-dimensional metal chalcogenide compounds by transforming the native interfacial metal oxide layer of low melting point metal precursors (group III and IV) in liquid form. In an oxygen-containing atmosphere, these metals establish an atomically thin oxide layer in a self-limiting reaction. The layer increases the wettability of the liquid metal placed on oxygen-terminated substrates, leaving the thin oxide layer behind. In the case of liquid gallium, the oxide skin attaches exclusively to a substrate and is then sulfurized via a relatively low temperature process. By controlling the surface chemistry of the substrate, we produce large area two-dimensional semiconducting GaS of unit cell thickness (∼1.5 nm). The presented deposition and patterning method offers great commercial potential for wafer-scale processes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corrigendum: Wafer-scale two-dimensional semiconductors from printed oxide skin of liquid metals

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the mater...

متن کامل

Direct Growth of Graphene Film on Germanium Substrate

Graphene has been predicted to play a role in post-silicon electronics due to the extraordinary carrier mobility. Chemical vapor deposition of graphene on transition metals has been considered as a major step towards commercial realization of graphene. However, fabrication based on transition metals involves an inevitable transfer step which can be as complicated as the deposition of graphene i...

متن کامل

Large-area, low-voltage, antiambipolar heterojunctions from solution-processed semiconductors.

The emergence of semiconducting materials with inert or dangling bond-free surfaces has created opportunities to form van der Waals heterostructures without the constraints of traditional epitaxial growth. For example, layered two-dimensional (2D) semiconductors have been incorporated into heterostructure devices with gate-tunable electronic and optical functionalities. However, 2D materials pr...

متن کامل

Wafer-scale growth of VO2 thin films using a combinatorial approach

Transition metal oxides offer functional properties beyond conventional semiconductors. Bridging the gap between the fundamental research frontier in oxide electronics and their realization in commercial devices demands a wafer-scale growth approach for high-quality transition metal oxide thin films. Such a method requires excellent control over the transition metal valence state to avoid perfo...

متن کامل

Wafer-scale integration of sacrificial nanofluidic chips for detecting and manipulating single DNA molecules

Wafer-scale fabrication of complex nanofluidic systems with integrated electronics is essential to realizing ubiquitous, compact, reliable, high-sensitivity and low-cost biomolecular sensors. Here we report a scalable fabrication strategy capable of producing nanofluidic chips with complex designs and down to single-digit nanometre dimensions over 200 mm wafer scale. Compatible with semiconduct...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017